Characterization of mass and swelling of hydrogel microstructures using MEMS resonant mass sensor arrays.

نویسندگان

  • Larry J Millet
  • Elise A Corbin
  • Robert Free
  • Kidong Park
  • Hyunjoon Kong
  • William P King
  • Rashid Bashir
چکیده

The use of hydrogels for biomedical engineering, and for the development of biologically inspired cellular systems at the microscale, is advancing at a rapid pace. Microelectromechanical system (MEMS) resonant mass sensors enable the mass measurement of a range of materials. The integration of hydrogels onto MEMS resonant mass sensors is demonstrated, and these sensors are used to characterize the hydrogel mass and swelling characteristics. The mass values obtained from resonant frequency measurements of poly(ethylene glycol)diacrylate (PEGDA) microstructures match well with the values independently verified through volume measurements. The sensors are also used to measure the influence of fluids of similar and greater density on the mass measurements of microstructures. The data show a size-dependent increase in gel mass when fluid density is increased. Lastly, volume comparisons of bulk hydrogels with a range polymer concentration (5% to 100% (v/v)) show a non-linear swelling trend.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, characterization and swelling behavior investigation of gelatin-g-Poly(Acrylic Acid-co-Itaconic Acid)

A novel pH-responsive superabsorbent hydrogel based on gelatin was prepared through crosslinking copolymerization of poly (acrylic acid) and poly (itaconic acid). The copolymerization conditions including monomers, initiator, gelatin and crosslinker concentration, reaction temperature, and neutralization percent were systematically optimized to achieve a hydrogel with swelling capacity as high ...

متن کامل

Integration of hydrogels with hard and soft microstructures.

Hydrogels, i.e., water-swollen polymer networks, have been studied and utilized for decades. These materials can either passively support mass transport, or can actively respond in their swelling properties, enabling modulation of mass and fluid transport, and chemomechanical actuation. Response rates increase with decreasing hydrogel dimension. In this paper, we present three examples where in...

متن کامل

Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study

It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...

متن کامل

Hybrid resonant energy harvester integrating ZnO NWs with MEMS for enabling zero-power wireless sensor nodes

This work introduces a novel concept for energy scavenging from ambient vibrations utilizing ZnO nanowires (NWs). This concept relies on the combination into a single device of a resonant element (i.e. an inertial mass suspended by four serpentine springs) and two arrays of NWs grown at both sides of the inertial mass. The NWs can be bent as a result of the resonant motion of the mass. Due to t...

متن کامل

Simulation of Drug Concentration Changes in Swollen Hydrogels with Different Compounds of Chitosan and Gelatin Based on PVA

Introduction: Mathematical modeling of drug release is one of the ways to improve the rate of drug diffusion and infiltration in swollen hydrogel based systems. Using this method can provide a better understanding of the mechanisms of drug control and its release. Hydrogels are a swollen biomaterial that needs to be controlled for use in drug release. Purpose and methodology: In this study, fiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 8 16  شماره 

صفحات  -

تاریخ انتشار 2012